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Abstract

The environmental and noise impact of airports often causes extensive political discussion which in some cases
even lead to transnational tensions. Analyzing local approach and departure patterns around an airport is difficult
since it depends on a variety of complex variables like weather, local and general regulations and many more.
Yet, understanding these movements and the expected amount of flights during arrival and departure is of great
interest to both casual and expert users, as planes have a higher impact on the areas beneath during these phases.
We present a Visual Analytics framework that enables users to develop an understanding of local flight behavior
through visual exploration of historical data and interactive manipulation of prediction models with direct feedback,
as well as a classification quality visualization using a random noise metaphor. We showcase our approach using
real world data from the Zurich International Airport region, where aircraft noise has led to an ongoing conflict
between Germany and Switzerland. The use cases, findings and expert feedback demonstrate how our approach
helps in understanding the situation and to substantiate the otherwise often subjective discourse on the topic.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—General
H.5 [Information Interfaces and Presentation]: User Interfaces—Graphical user interfaces (GUI) K.4.0 [Computers

and Society]: General—

1. Introduction

Aircraft noise is hazardous to health and in affected ar-
eas, studies have proven negative effects on cardiovascu-
lar [Kni77] and mental health [AWAGHG69] and even the
reading comprehension and recognition memory of chil-
dren [SBC*05]. Especially approaching aircraft have a high
noise impact on the ground below, as they fly in slower and
longer in lower altitudes than departing planes. Consequently,
we decided to focus on approaching aircraft throughout this
publication, as departures play no role in the discussion. Lo-
cal conflicts around airports about the distribution of air traffic
and noise are clearly comprehensible and a well-grounded
discussion is crucial.

Since the 1990s, Germany and Switzerland have been dis-
cussing about a fair noise distribution. The international air-
port of the Swiss city of Zurich is located about 15 kilometers
south to the Swiss-German border. Figure 1 shows the spatial
distribution of on average over 700 arrivals and departures,
a distribution that has not changed considerably since then.
Remarkably, almost 80% of inbound air traffic comes in from
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north, so that the predominant part of these approach routes
leads over mostly German territory.
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Figure 1: Air traffic routes for arrivals (red) and departures
(blue) to Zurich airport and average distributions of flights
amongst them. Note the Swiss-German border to the north.

Germans suffering from the aircraft noise intensely protest
against these conditions. Despite attempts between the two na-
tions to negotiate treaties regulating air traffic, no agreement
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has been reached so far, which is why the German govern-
ment in 2005 unilaterally imposed restrictions in the 220.
Durchfiihrungsverordnung zur Luftverkehrs-Ordnung (220th
executive order to air traffic regulations) that, in general,
prohibits direct approaches over German territory between
9pm and 7am. One of the major problems in this extremely
complex conflict with political, social, economic, and envi-
ronmental impact is the lack of a neutral instance. Certainly,
there is none helping in the discussion and providing facts
rather than assumptions. Facts could enable different audi-
ences to comprehend current and past air traffic, and to find
reasons for apparent violations of effective rules. We present
a working prototype specifically engineered to suit these in-
formation needs.

In comparison to a global view on a flight from one airport
to another, on the local level a variety of factors influence
the specific way an airplane approaches its destination, for
example weather conditions, safety, and political regulations,
air exclusion zones, and other traffic. Due to this complexity,
we chose a Visual Analytics approach that enables the user
to explore past and current flight movements in the region
by landing direction, to find flights violating specified rules
and to find explanations for apparent violations. Furthermore,
we provide a visual interface for a prediction model allowing
the forecast of the expected amount of flights with respect
to weather conditions. Complemented with prediction com-
parison and quality measurement visualizations, users can
learn to understand flight behavior in the region by testing
assumptions against the prediction model.

The structure of the remaining work is as follows: After
outlining related and existing approaches in Section 2, we
present the basic structure and workflow of the proposed sys-
tem in Section 3 with the three main tasks of data exploration
in Section 3.1, prediction in Section 3.1 as well as compari-
son in Section 3.1. Afterwards, we show the usefulness of our
approach based on real data with use cases and interesting
insights in Section 4 and expert feedback in Section 5. We
finally conclude with an outlook towards further research
questions and possible fields of application in Section 6.

2. Related Work

We first discuss related work in general visual analysis of
movement data in Section 2.1. Specific work in air traffic, pre-
diction and uncertainty visualization are covered in Sections
2.2 and 2.3, while Section 2.4 concludes with the positioning
of our work within the aforementioned.

2.1. Visual Analysis of Movement Data

Analyzing air traffic falls into the domain of spatio-temporal
data analysis [AAB™ 13]. Common analysis techniques such
as aggregation, segmentation, or clustering are applied in
a variety of different application scenarios. Tominski et
al. [TSAA12] visualize features of road traffic in 3D by
stacking trajectories as color-coded attribute bands on the
map and on top of each other. Amongst others, Andrienko

et al. [AAWO07] also propose the use of Space-Time Cubes
[KWO5] to display the temporal evolution of a trajectory
and clustering to identify common patterns. Flying entities
have to be treated differently as they are less restricted by
the topology than other moving objects such as, for example,
trains or cars. Spretke et al. [SBJ*11] analyze bird move-
ments using semantic segmentation to identify different states
like day or night flights or stopovers, which enables to draw
inferences about the animals’ behavior. Both single trajecto-
ries [WAPWO06] and sets of trajectories [GWY*11] can be
visually explored.

Corresponding to the analysis of pure movement, it is also
desired to analyze movement attributes along trajectories.
Worner et al. [WE12] investigate the speed feature of public
transportation vehicles. Bak et al. perform an automatic anal-
ysis of meeting points of objects [BMH™12] and investigate
locations of stops [BPSD12]. Dykes et al. [DM03] explore the
design space for detecting patterns and external influence fac-
tors to movement. The visual analysis of vessel movement is
described by Willems et al. [WVDWVW(09] with a focus on
the visual object speed representation. Wood et al. analyze the
beginning and the end of movement trajectories by spatially
layouted small multiples of matrices [WDS10, WSD11]. The
context of movement, in this case being weather the contex-
tual dimension, is proposed in an interactive tool by Lundblad
et al. [LEH09]. Similar to the applied spatio-temporal rule
checking, Scheepens et al. [SWvdW™*11] use so called blocks
on a density map to emphasize regions that are of special
interest depending on the underlying vessels behavior.

2.2. Analysis of Single and Multiple Air Traffic
Trajectories

Air traffic still cannot fly freely and is subject to numerous
regulations and flight rules. For the analysis of multiples
of aircraft trajectories, Hurter et al. [HTCO9] presented a
comprehensive framework that allows the user to visualize a
limited set of features interactively, supported by extensive
Brushing- and Linking capabilities. In another publication,
Hurter et al. [HCGT14] compare image-based information
visualization techniques for their usefulness in aicraft trajec-
tory data. Furthermore, Hurter et al. [HAG™ 14] propose a
Visual Analytics System to derive wind information from
flight trajectories. Tijmen et al. [KvdZT14] build upon the
aforementioned solution and claim to furthermore be able to
visually identify pattern changes in flight trajectories both
locally and globally. Buschmann et al. [BTD14] present
another 2D and 3D approach to the visualization of mas-
sive aircraft trajectories and provide responsive techniques
for filtering, aggregation and mapping of attributes. Another
approach by Albrecht et al. [ALP12] abstracts from single tra-
jectories to density maps of air traffic, also making it possible
to show path conflict probabilities in the density map.
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2.3. Movement Prediction And Visual Analysis of
Uncertainty

Part of this work deals with the visual representation of spa-
tial predictions for flight density. Different approaches ex-
ist to predict individual movements, for example of cars in
WhereNext by Monreale et al. [MPTGO09]. An important find-
ing is that the prediction of movement helps in understanding
behavior, but that the type of objects to predict and the scope
(e.g. global vs. local) change the requirements for predic-
tions, as Nizeti€ et al. state in [NF10]. As predictions always
incorporate uncertainty about the results, we apply a noise
visualization to represent the prediction quality. While we ap-
ply it to a whole cell, Kinkeldey et al. [KMKS14] apply noise
to the edges of a grid. Cedilnik et al. [CR00] also use the
edges of a procedural grid to display uncertainty by applying
distortion.

2.4. Positioning our Work

While general rules of spatio-temporal data analysis apply,
visual approaches on movement data can be roughly distin-
guished by their scope either on large amounts or only few
trajectories. As well, some approaches focus purely on the vi-
sualization of trajectories and/or attributes alone, while other
approaches make use of techniques like aggregation, cluster-
ing and segmentation to add semantic meaning to movements.
One work that is close to ours is [KvdZT14] providing possi-
bilities for the exploration of recorded data and for the visual
recognition and comparison of spatial and temporal changes
in movement patterns. But in addition, our system helps by
providing an overview visualization with stacked bar charts
that point the user to times with unusual behavior as described
in Section 3.1. Moreover, we provide means to find reasons
for unexpected behavior. Also, we describe how our approach
helps in understanding the general behavior of flights under
adjustable weather conditions and detached from varying
individual time intervals with visual interactive prediction
feedback in Section 3.1. Drawing conclusions about behav-
ior and testing them is also supported by the comparison
visualization we introduce in Section 3.1.

3. System Design
The framework integrates a tool set combining the spatial
and temporal exploration of movement data with a prediction
view. Additionally our framework contains tools to evaluate
and improve predictors on a general and local level. Further-
more, it supports the checking of rules that can implement
any combination of spatial and temporal constraints for the
recorded trajectories in order to find outliers or violations.
Our system is written in Java, and for the prediction part,
we make use of the flexible WEKA machine learning suite
provided by Hall et al. [HFH*09]. Please note that our focus
was not to provide a classification as accurate as possible, but
to determine methods for prediction and classifier error visu-
alization, and to learn from movement predictions combined
with interactive feature selection. Our approach partitions the
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area around Zurich airport in quadratic subcells. For each
subcell, we train an individual, regression tree based WEKA-
MS5Rules classifier using the records of about 12 months of
flight traffic. The input features are expressed in intervals of
thirty minutes, and contain the time of day, flight density in
absolute numbers and the weather features on the runway,
which are wind direction, power, temperature, precipitation,
and obscuration. We chose these features because they are not
only easy to comprehend, but also because according to an
expert, these factors are the most influential ones especially
for approaching flights.

The air traffic data used throughout this publication is
collected from the AirTraffic LIVE webservice by Kramarz
and Loeber [KLO7].

3.1. Exploration of Recorded Data

The first core feature is the exploration view in Figure 2. This
view allows the analyst to review recorded data. Generally,
the screen is divided into two parts: On the left (Figure 2 A)
is the management area. Here, the user can choose the view
to be presented, set visualization options, select data by date
and time, and review statistics about the data and the weather
situation. The right side (Figure 2 B) is a map providing the
spatial reference for trajectories and is able to display more
details and aggregated views on the data.

Regular Partitioning The grid to be seen in the background
is a tesselation of squares with a length of ten kilometers,
covering a square of 200 by 200 kilometers with Zurich
airport at its center. The idea of tesselating the space in
which the trajectories occur was inspired by Andrienko et
al. in [AAO08], where the authors used area tesselation to dis-
play cell-aggregated characteristics of car traffic in the city
of Milan. In our case, the grid cells are used to aggregate
values such as flight density. For this work, the side length of
each cell has been set to ten kilometers, as this size roughly
reflects the possible area of a single aircraft’s surface noise
footprint and provides a good tradeoff between accuracy and
generalization. A grid resolution of 10 km is also used by
the European Aviation Safety Agency (EASA) in a study on
en-route aircraft noise [S. 09].

Data Selection Workflow At the beginning of the explo-
ration workflow, the user chooses the trajectories he wants
to analyze either by time or by the distribution of certain at-
tributes from a dropdown menu, shown in detail on the right-
hand side of Figure 3. We provide the data on a daily basis to
the user. As flight traffic usually follows daytime patterns, the
user can look for times with specific traffic behavior: In the
date dropdown menu, the tool supports the display of horizon-
tally stacked bar charts displaying the proportions between
either attribute values of the dataset or other proportions re-
lated to the moving objects’ behavior. By stacking these bar
charts vertically, the specific bars can be compared easily.
Thus, the analyst is able to quickly determine changes in be-
havior between the time steps and to spot times with divergent
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Figure 2: The Exploration View. Part A denotes the management area, whereas part B contains a map view depicting all selected
data and showing details on a flight violating a rule in a textbox-overlay. Black tracks denote flights that violate rules.
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Figure 3: Management interface with visualization options
and behavior filter in part A, date and time selection in part
B, weather display in Part C and the overview visualization
in the right part.

or otherwise special behavior. The decision, which proper-
ties to display in these bar charts is highly task-dependent
and cannot be generalized for arbitrary kinds of data. In this
work’s example, the proportions reflect the amount of arriving
planes either approaching from the north (purple, runways 14
and 16), the east (green, runway 28) or the south (red, runway

34). Due to terrain restrictions, no flights can approach from
the west. Orange color indicates a flight were the landing
direction could not be determined automatically. As shown
in Figure 1, the distribution patterns of arriving flights are
usually the same. Thus, deviations from the usual distribution
are indicative of extraordinary behavior in the data that the
analyst can then examine in detail.

To further aid the analyst, the bar chart can be annotated
with more information. Here, the number next to the date
reflects the total number of arrivals recorded for the chosen
time frame. The second number shows the amount of flights
approaching from the north, thus also giving an idea on how
many flights the other proportions roughly reflect. The last
number shows the amount of flights violating the predefined
rules on that day, which can be another indicator for unex-
pected behavior. We chose to visualize the landing directions
as the key point of the bilateral discussion.

In-Depth Analysis In the next step, the analyst reviews the
selected data: A combined line and bar chart, as displayed in
Figure 3 B, provides information on the temporal distribution
of the amount of objects on screen over the chosen time frame.
The bar chart indicates the time and amount of flights that
violate the predefined rules. By comparing bar and line chart,
the analyst can assess the proportion between special, in our
case rule-violating, objects and the total amount of present
objects.

The analyst has now two choices to investigate the selected
trajectories on the map. First, he can choose a cell-wise aggre-
gated view like in Figure 4 displaying the averaged principal
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direction. Arrivals and departures are averaged separately,
as naturally, arrivals and departures usually take different
directions even in the same area. In cells where no flights
have taken place, no arrows are displayed. Furthermore, the
user can scale the arrow sizes by the amount of flights that
occurred in the respective cells compared to all others.

As second option, the user can display all individual tra-
jectories in the selected time. In this view, the coloring of
the trajectories matches colors of the proportions from the
drop-down menu. Additional properties that have not been
included into the bar chart can also be shown on the map.
For example, departing flights are represented in blue and
flights that violate aforementioned rules in black (compare
trajectories in Figure 2). This color coding enables the analyst
to quickly distinguish, which areas of the map are distinctive
for certain behaviors and in which areas space is shared be-
tween the different groups of trajectories. For example, areas
traversed by arrivals landing from the north with purple tra-
jectories can be clearly distinguished from areas reserved for
eastern or southern approaches in green and red. The plain
view on the unfiltered data might still involve too many trajec-
tories to analyze individual behavior. The analyst can narrow
down the displayed trajectories by selecting only single time
steps. Our tool provides the ability to skip through the data
in steps of thirty minutes by adjusting the slider beneath the
line chart (compare Figure 3 B). Steps of half an hour seem
appropriate, as this relates to the resolution of the available
weather information that can be crucial to the aircraft’s be-
havior. As a side effect, the amount of displayed flights also
gets reduced to approximately 30 at a time. Another option to
reduce the amount of displayed trajectories is the possibility
to chose between arrivals and departures (Figure 3(A)), as
arriving flights behave differently.

Highlighting of single or multiple trajectories for bet-
ter comparison by click-selection is supported. Around the
mouse pointer, a selection area is provided, and selected tra-
jectories appear in yellow or dark gray (for illicit flights),
as shown in Figure 4. As the used map underlay provides
information in different colors (e.g., amber for main streets,
green for woods, and blue for waters), the contrast between
trajectories and map can sometimes be low, making it difficult
to distinguish single paths. To avoid this, we chose the color
of the trajectories specifically to improve discriminability. In
addition, the user can turn on a transparent, dark background
overlay between the map and the trajectories to improve con-
trast and to reduce visual clutter introduced by the map, as
well to be seen in Figure 4.

Prediction Model The prediction view includes another fea-
ture helping advanced users to actively influence the clas-
sifiers’ training data by either in- or excluding flights. By
default, all regular flights are included, while all flights vio-
lating a rule are excluded from the training data. Still, with
his knowledge, an expert could be aware of movements that
follow other requirements than regular traffic and thus are not
helpful or even harmful to the classifiers prediction model.
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Figure 4: Per-cell averaged flight direction visualization
with the average direction of arrivals in red and of departures
in blue. Selected trajectories appear in yellow.

He can now choose to exclude these flights by selecting them
and choosing the respective option. On the other hand, the
predefined rules might not regard special permits or excep-
tions and falsely mark an object as violator. For example,
there are no temporal restrictions on arrivals over German ter-
ritory on the Swiss national holiday - knowledge that should
be incorporated into the prediction model.

Finally, the analyst can start to draw conclusions by review-
ing the trajectories and accessing additional details about
them. Flights are heavily influenced by local weather, so
in Figure 3 C, icons visually represent the most important
features of temperature, wind strength and direction, and pos-
sible kinds and intensity of precipitation and obscuration. The
analyst can also access more details about flights by hovering
over them. As shown in the upper half of Figure 2, an overlay
window will provide further information of the underlying
trajectories. The example shows additional information on a
flight that violated a predefined rule, giving the user hints for
the reason for the violation. The exploration view provides
a first overview and to build hypotheses on the behavior of
the displayed flights based upon their trajectories and asso-
ciated attributes. From here, the analyst can now generalize
his hypotheses by comparing reality to a prediction model
in the prediction view. Alternatively, the user can try to test
his hypothesis in the comparison view, where he is able to
compare predictions for different weather situations at the
same time.
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Figure 5: Prediction view, with input feature selection con-
trols and density representation.



J. Buchmiiller & H. Janetzko & G. Andrienko & N. Andrienko & G. Fuchs & D. A. Keim/ Visual Analytics for Exploring Local Impact of Air Traffic

Prediction of Flight Density And General Behavior In
the exploration view, the user is able to review only his-
torical data. In the prediction view, shown in Figure 5, the
analyst can find out about the general behavior interactively
by visualizing the prediction of a classifier under different
conditions. The first step in the prediction view is to initialize
the prediction with the desired input features. The classifier
was trained with the amount of flights in a given cell’s area
and the prevalent weather conditions. This allows to predict
the flight density in each cell for different weather situations,
which can be selected by the user, as he can change the input
features of wind direction by turning the compass dial, and,
using the sliders, of wind speed, temperature, intensity of
precipitation and/or obscuration. Using these controls, shown
in Figure 5 on the left, the user can create a custom situation
of his wishes or he can recreate a situation he reviewed in the
exploration view for comparison. The user gets immediate
feedback on his actions, as the result is directly displayed in
the map view. The predicted values are visually represented
by a transparency-modified black overlay for each cell (Fig-
ure 5). The higher the value, the higher the opacity, making
cells with high prediction values appear darker and less trans-
parent than cells with only few predicted flights. The result is
a density map of the tesselated area in the resolution of the
grid cells’ side length. If needed, the user can also display
the values as text labels directly in each cell. The user expe-
riences an animation-like effect by the immediate feedback
and can understand transitions from one state to another. For
example, the user can follow the in- or decrease of flights in
certain areas directly while sliding the wind strength control
back and forth.

At this point it is noteworthy that at first sight, it could
appear useful to smooth the predicted values into a soft-edge
density map with smooth transitions between the specific
density regions. The problem is that such a smoothing would
create a false impression of accuracy. The amount of flights
going through a single cell is directly related to the impact
these flights have noise- or otherwise on the ground below.
Smoothing between cells would mislead the viewer to think
that the density areas are precisely defined and the impact is
modeled exactly, while the usage of square cells still commu-
nicates the notion that the impact is averaged for the whole
cell area and thus contains a certain displacement error.

Comparison of Predictions And Recorded Data As pre-
dictions inherently involve uncertainty about the predicted
values, our system enables the analyst to check whether the
prediction model actually behaves as expected and in which
regions the prediction quality is low. The density map view
can be switched from displaying predicted values to the dis-
play of real values (for example in Figure 7A and B), but the
immediate transition makes it hard for the user to compare the
values. That is why, to be able to compare the values in situ,
the available space in each cell has to represent both values.
As a result, we introduce a picture-in-picture visualization
for direct value comparison (Figure 6). An obvious segmenta-

Density Value 1

Density Value 2

Figure 6: Example of a cell containing two different density
values for comparison (left) and examples for cells with all
possible difference combinations and noise-based uncertainty
visualization in detail (right).
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Figure 7: View on aggregated real-world (A) and predicted
density values (B) of the same day. Comparison visualization
thereof in (C) and (D) with noise visualization for predictor
error.

tion could be a complete diagonal cut, or a sub-region either
centered in the cell or aligned with one corner. Yet, most
shapes share a problem: the regularity of the shapes has a
perceptional side-effect, creating the strong impression of
cohesiveness, distracting from the individual cells. To bal-
ance this effect, the chosen shape is clipped from a diagonal
cut. One value’s surface visually engulfs the other, creating
the impression of a fore- and background. This design alle-
viates the effect of the perception of cohesive areas between
neighboring cells and at the same time still allows the user to
quickly spot the tendency and coarse amount of the difference
between the two values. The design strongly boosts the visual
distinction between areas where predicted values match the
real ones and areas where this is not the case. Another appli-
cation for the comparison view is to compare two different
predictions for different weather conditions. Learning from
different input feature sets and being able to compare them
helps the user to get an understanding of the way air traffic
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o

Figure 8: Noise applied to a solid, dark gray image and
a map excerpt showing Zurich. With increasing noise, the
incremental loss of information can be observed, while the
main features of the map excerpt stay visible.

works in that region, as he is able to relate density develop-
ment to changes in features. Comparing two situations helps
him to find general hypotheses instead of slowly having to
build one by iterating through many days manually.

Finally, the advanced user might also be interested in the
prediction confidence of the applied classifier for each cell.
In the field of machine learning, the quality of classifiers usu-
ally is measured by statistical methods like relative or mean
squared error. Basically, measures like these allow assertions
over bias and variance of the prediction results, allowing to
judge whether the predictor produces consistently realistic
values or not. But these quality measures usually do not re-
gard the spatial dimension of spatio-temporal data. Yet, for
the analyst it could be very interesting to see exactly where
a classifier is confident to predict values close to reality, but
still displays deviant values for the currently selected con-
ditions. This information can help to find areas where the
objects behave differently than expected/modeled, as areas
with high classifier uncertainty indicate that the prediction
input features do not help in explaining the moving objects’
behavior in these regions.

Displaying this information in the prediction view is chal-
lenging, because most visual variables are already mapped
or cannot be used since position, size, shape and orientation
are preordained by the grid cell and difference visualization
shapes, and color cannot be applied because this might inter-
fere with colors of the map underlay. However, one visual
variable is left: Texture. Textures cover an area with more
or less recurring patterns, for example grids of lines or dots.
We apply random noise to the image, much as one would
expect for example from a mistuned analog TV. The amount
of noise applied to an image can be regulated, and increasing
noise gradually reduces the information in the image the noise
is applied to. An example for different amounts of random
noise applied to an image can be seen in Figure 8. The noise
gradually degenerates the underlying image, thus reducing
details step by step. This seems to be an ideal metaphor for
uncertainty, as with increasing noise, the visual quality of the
image decreases together with the classifier confidence. In
other words, the less the viewer can perceive of an area, the
less sure is the classifier about the moving objects’ behavior
in that area. While the specific amount of noise cannot be
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easily estimated by a viewer, the user can tell the difference
between small and large amounts and estimate the dimen-
sion of noise easily and can also spot areas with several cells
where the error in- or decreases. Areas affected by larger
uncertainty than others indicate that the used classifier or its
parameterization, respectively, cannot sufficiently explain the
behavior of moving objects in this area, which itself can be
important to know for the analyst. In Figure 7 D, different lev-
els of noise with different prediction values can be observed.
We use Gaussian Noise to calculate a randomized gaussian
distribution of gray values to be applied to the image. The
amount of resulting noise can be parameterized because the
function is dependent on the standard deviation ¢ that can be
modified as needed, as for example explained in [Bar13].

4. Case Studies

For our prototype, we identified two different groups of users:
First, there are professional and semiprofessional users that
already possess a certain degree of domain knowledge. Such
users could for example comprise journalists or PR officials.
The primary tasks of these users are the analysis of long-term
data and identification and explanation of outstanding flight
patterns.

The second user group is formed by the interested general
public, e.g., local residents or real estate customers. These
users are more interested in the current situation, as they want
to check instantly, why their area experiences so much traffic
at this very moment. As well, they are interested in using
the prediction to model typical weather situations to check
for the expected traffic in their vicinity. In the following,
we will demonstrate how the presented prototype can fulfill
these information needs based on flight data from June to
September 2014 for the two groups of users we identified. The
derived insights are real examples for interesting findings.

For both groups, no services exist that can provide func-
tionality to display recorded flights over longer periods of
time, or any possibility to check for rule violations, to view
statistics about them or to support the creation of a mental
flight behavior model.

4.1. Professional Users

As the regional conflict has been ongoing for years now,
many municipalities in the area maintain a close watch on
the situation, and react to citizen’s complaints about possible
violations. Thus, commissaries on the issue need to be able
to quickly review the time period since their last analysis,
finding out whether the air traffic complied to existing rules
or violations did indeed occur. This functionality is provided
in the exploration view in Figure 9.

The analyst uses the date selection menu to check whether
on mentioned days any violations, represented by the right-
most number, occurred (Figure 9 (1)), and thus can already
dismiss unjustified reports about days with no violations. On
days where violations happened, our prototype supports the
analyst by showing when the violations happened at that day
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Figure 9: Exploration with aggregated overview (1), flights violating regulations (2) and a day with no northern approaches (3).

in the bar chart to the left (Figure 9 (2)) and by providing the
weather report for the time the violations happened. Further-
more, the analyst can view details of each suspected illicit
flight that might be of interest, showing the precise rule that
was violated, for instance the current altitude and the type
of aircraft. An example can be seen in Figure 9 (2), where
landings during night time have to take the northern route,
as a six knot south-eastern wind results in unsafe landing
conditions for aircraft approaching from the south or east.

Finally, the analyst has found sound explanations for most
violations, but also a few flights are left for which he cannot
find any explanation, leaving room for further research. In the
same manner, the analyst can as well validate official expla-
nations for certain exceptions or verify the statements made
in reports on rule violations published by airport authorities.

While the analyst is still browsing the dates, a certain spe-
cific date catches the attention of the analyst in Figure 9 (1),
May 11th: On this date, no flights have approached the air-
port from the usual northern direction, as approaches via the
north would appear in purple. In fact, it seems only one flight
landed from the north and all other flights landed from ei-
ther the east (green) or the south (red). Simultaneously, the
number of recorded flights is not lower than on other days.
As a next step, the analyst can select the day to check out
more details (Figure 9 (3)). The overview visualization shows
where flights occurred and where not. The analyst notices that
all incoming flights are taking other routes than the northern
one. The airplanes land from the east and depart towards the
north. Checking the weather, the analyst realizes that strong
winds were blowing most of the day effectively preventing
approaches from the north. While there is a sound explana-
tion for the unusual behavior, this is as well a very surprising
and outstanding finding, as it proves that the default operat-
ing concept is not the only possible one. Other operational
concepts can support the same amount of daily flights and
are not as far out of the question for regular operations as
sometimes claimed.

Summarizing, the analyst is able to conveniently check
several dates for reported incidents, filtering out dates not
worth looking at without the need to take a direct look at that
data. Furthermore, it is possible to compare the provided en-
vironmental conditions for any given time, thus allowing the
user to draw conclusions or to make decisions, for example
whether an exception was valid or not. Finally, already while

browsing the available dates, the stacked bar chart visualiza-
tion helps the analyst to find interesting behavior on the fly,
and he can directly take a look and find out more.

4.2. General Public

Figure 10: Two density predictions, showing differences
between (1) and (2). (3) shows the comparison visualization
with two opposing weather situations.

Especially for an audience with less experience on the
subject, it is very hard to understand all the factors that have
an influence on flight density in their direct vicinity. Just from
taking a look at the recorded data day by day, people can
neither learn about the general aircraft behavior in their area,
nor can they learn about the conditions under which pattern
changes occur.

Our prototype enables users like future home owners and
interested citizens to interactively model desired conditions
and to check the expected flight density. The derived knowl-
edge could influence someone in buying a house or, on the
other hand, could help someone to apprehend and adapt to
situations he previously did not understand.

Figure 10 shows the results of a users interactions with our
prototype. The user wants to investigate the influence of the
weather conditions on flight patterns, so he uses the prediction
view. Our prototype presents a density visualization for an
average day with low winds and about 20 degrees Celsius
(Figure 10 (1)). Dense and sparse areas can be identified
immediately by comparing the cell opacity. Changes to the
selected weather conditions using the respective sliders will
invoke real-time transitions in saturation, when prediction
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values are changing as in Figure 10 (1) to (2). The transitions
directly help the user to understand in which direction the
expected density values change when the weather changes.
In this example, the user can learn how strong westerly winds
force flights to land from the east, effectively reducing the
number of flights approaching from the areas north to the
airport (area marked in the green circles).

To enable the user to compare two predictions for different
situations, for example two common, but different weather
situations, he can use the prediction comparison view (Fig-
ure 10 (3)), in this example westerly wind vs. easterly wind.
The outer part of each cell represents the predicted amount
of air traffic for the first selected weather situation, the inner
for the second (compare Figure 6). The user can now imme-
diately spot regions with large differences in predicted flight
numbers, marked in red, thus being able to identify regions
heavily influenced by the modified input features. The region
marked in blue shows an area where the changed input fea-
tures do not influence the density much or at all, depicted by
grid cells with uniform colors.

Summarized, the analyst is able to easily identify areas that
experience less flights than others. Our system provides op-
tions to check the predictions for different weather situations
and allows to directly compare them. In addition, for both
single and compared predictions, the user is able to consult
the uncertainty visualization as depicted in Figure 6 with dif-
ferent amounts of uncertainty, thus being able to judge how
accurate the predictions are. Showing the uncertainty to the
user helps avoiding hasty conclusions and cognitive biases by
the user, as the user now knows where he can trust the data
and where not.

5. Expert Feedback

‘We are in contact with a political journalist, who works for the
local newspaper Stidkurier and has covered the conflict on a
local and national level for now more than 15 years. He is cer-
tain, that our approach would be very beneficial for his work:
Violation detection, traffic pattern overview, the exploration
and comparison of data of longer time spans up to several
years, and the respective analysis will help journalists to ver-
ify claims made by involved parties. Up to now, there is no
easy way to detect unusual situations, which is an important
part of his work. We presented and explained our prototype
and use-cases to the journalist and asked for feedback and
suggestions for improvement. After a short introduction, our
expert was able to use the prototype by himself. He explored
different days and time intervals and started speculating about
different days with clearly differing flight behavior. While
Browsing flights violating regulations, he quickly started to
try to find reasons, assisted by the additional weather and
flight information displayed. In particular, our expert found
the stacked bar chart overview to be very intuitive and helpful
to decide which days to investigate further, e.g. in order to
search for signs of new operational flight approach concepts.

While the overall feedback was very good, our expert had
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improvement suggestions: Foremost, a live overview would
be desirable for him as well as the possibility to visualize
more features like aircraft type and altitude directly on the
trajectories. The system should also hint probable causes for
violations and present the results to the user. Incorporation
of noise level information and prediction would be desirable.
According to the expert, there will be a future challenge
with new and more complex flight regulations that will be
more flexible, hindering a simple automatic rule violation
reasoning. Our system will have to be adjusted to still be able
to determine reasons for violations.

6. Conclusion

We presented a Visual Analytics approach to explore and
investigate local air traffic behavior. We enable users to de-
velop an understanding of how flight traffic evolves in his
specific area of interest. The visual exploration together with
our weather-dependent prediction enables users to get further
insights. As prediction always comprises uncertainty, we can
call the users’f attention to regions with lesser prediction
quality visually using Gaussian noise image modification.
Additionally, we can both detect flights violating regulations
and it is often possible to find explanations.

We were able to identify some flights that violated rules for
no apparent reason, mostly in the evenings. But we were also
able to give a sound explanation for other violations. This
could prove very beneficial for the political discussion, be-
cause allegations can be checked neutral point of view. Also
contributing to the conflict discussion is the possibility to
quickly find days with divergent flight behavior showing dif-
ferent modi operandi. This is clearly shown in the surprising
finding described in section 4.1 that had a notable impact on
the local debate. Backed by our expert feedback, we are con-
vinced that our approach is a valuable contribution not only
to the Zurich Airport conflict, but for other regions around
airports worldwide. The local community is extremely inter-
ested in our work and we have received several requests to
publish our tool. For this reason, we plan to provide access to
the tool to more people, for example with a web service that
can specifically adress different user groups, also possibly
expanding to other areas as well. Until then, we want to work
on the integration of further data sources like flight sched-
ules and aircraft noise models in order to improve reasoning
for rule violations and traffic impact, enabling a fact-driven
discussion between citizens and air traffic planners.
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